Comparator Exercises

Question 1

Consider the circuits shown below:

What is the value of V_{out} when:

A.
$$V_{+} = +2V$$
 and $V_{-} = +3V$ in circuit 1?

B.
$$V_{+} = +3V$$
 and $V_{-} = +2V$ in circuit 1?

C.
$$V_{+} = -2V$$
 and $V_{-} = +3V$ in circuit 1?

D.
$$V_{+} = -2V$$
 and $V_{-} = -3V$ in circuit 1?

E.
$$V_+ = +4V$$
 and $V_- = +5V$ in circuit 2?

F.
$$V_{+} = +5 \text{ V}$$
 and $V_{-} = +3 \text{ V}$ in circuit 2?

G.
$$V_{+} = +6V$$
 and $V_{-} = +3V$ in circuit 2?

H.
$$V_{+} = +3 V$$
 and $V_{-} = +6 V$ in circuit 2?

I.
$$V_{\perp} = +2V$$
 and $V_{\perp} = +2V$ in circuit 1?

J.
$$V_{+} = -2V$$
 and $V_{-} = -2V$ in circuit 1?

K.
$$V_{+} = 0V$$
 and $V_{-} = 0V$ in circuit 1?

Question 2

Consider the comparator circuits shown below.

When the light intensity is **600 Lux**, the resistance of the LDR is $4k\Omega$.

In each circuit the LED changes state (goes from ON to being OFF or from OFF to being ON) when the light level is 600 Lux.

- A. In circuit 3, what is the state of the LED when the light level is 800 Lux?
- B. In circuit 3, what is the value of the resistor labelled R?
- C. In circuit 4, what is the state of the LED when the light level is 800 Lux?
- D. In circuit 4, what is the value of the resistor labelled R?
- E. In circuit 5, what is the state of the LED when the light level is 800 Lux?
- F. In circuit 5, what is the value of the resistor labelled R?

Comparator Exercises Answers

Question 1

A. $-10\,\mathrm{V}$ It should be $-12\,\mathrm{V}$ but $\mathrm{V}_{\mathrm{out}}$ is always $2\,\mathrm{V}$ away from the power supply

B. +10 V

C. -10 V -2 < +3

D. +10V -2 > -3

E. +2V It should be 0 V but V_{out} is always 2 V away from the power supply

F. +7V

G. +7V

H. +2V

I. 0V There is no difference between the inputs

J. 0V

K. 0V

Question 2

A. ON Light intensity is greater, resistance of the LDR is less, V₊ is higher

B. 13 kΩ AT 600 Lux, 4 kΩ: 12 kΩ = R: 39 kΩ, R = 13 kΩ (ratio 1:3)

C. OFF

D. $30 k\Omega$

E. OFF As for question A., V_{+} is higher, $V_{out} = +10V$, the LED is OFF

 $F.~12\,k\Omega$